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STRUCTURAL DYNAMICS OF THE HELIOGYRO

SUMMARY

The Heliogyro is a particula: form of the solar sail in which the reflecting

surface consists of a set of long, narrow and very thin blades that rotate about

a central axis in the manner of a helicopter rotor. Blade pitch is the primary

means of control. The structural dynamics of the Heliogyro are studied in this

report in order to provide a basis for engineering development and to answer

questions regarding concept feasibility. The topics that are examined include

vibration modes, damping, coupling between blade pitch and blade bending, and

dynamic response to maneuver commands. The results of a brief experimental

program are presented and compared with analysis.

1NTRODUCT I ON

The Heliogyro s a particular form of the solar sail, which is the name

that has been given (Refs. l, 2, 3) to a class of devices which develop useful

mechanical force in space from solar radiation pressure. The principle of

operation of the solar sail is illustrated in Figure I. Light is partly

reflected and partly absorbed at the surface of an object. The part that is

reflected exerts a pressure

Pr = Pofr c°s2y (l)

normal to the surface, where Po is the total pressure for normal incidence due

to reflected light, f is the coefficient of reflectivity, and T is the incidence
r

angle. The part that is absorbed exerts a pressure

l

Pa = 2- Po (] " fr ") cos ¥ (2)

in the direction of the incident radiation. The part that is absorbed is

eventually reradiated diffusely from both sides of the reflecting surface.



The componentsof radiation pressure are combinedas follows to obtain a drag

pressure, Pd' in the direction of illumination anda lift pressure, p£, perpen-
dicular to the illumination.

l
Pd = Po{fr c°s33" + _ (]-fr)cOs Y} (3)

p£ = po(fr cos2T sin y) (4)

The coefficient of reflectivity, f is high for the metalized surfaces
r'

envisaged in the solar sail concept. It is commonly assumed equal to unity in

preliminary design studies.

The lift and drag components of solar radiation pressure have a strong

analogy with the lift and drag components of aerodynamic pressure, so that a

pseudo-aerodynamic theory of solar sail behaviour can be developed. The lift

force is particularly important because it provides the means for generating

forces to accelerate or decelerate a body that is in a circular orbit around the

sun.

The magnitude of the solar radiation pressure is not large by terrestrial

stahdards. At the Earth's distance from the sun its average is equal to

0.90 x 10 -4 dynes/cm 2 = 0.188 x lO-6 Ib/ft 2 = .1304 x lO -8 psi. Very large

surface areas are required to obtain enough thrust to be useful for propulsion.

Fortunately for the solar sail concept, the technology is available for the

manufacture of extremely thln reflecting surfaces. Standard commercially avail-

able I/4 mil aluminized Mylar, for example, makes a solar sail that is quite

competetive with other means of propulsion on long missions.

The fundamental performance parameter of the solar sail is the sail light-

ness number, Xs' which is defined as the ratio of the solar radiation pressure

to the solar gravitational force per unit area. Since both factors vary in-

versely as the square of the distance from the sun, the lightness number is con-

stant within the solar system. The sail lightness number is related to the

thickness, h, of the sail, and its weight density, pg, by

2.15 x lO -6

Xs = (pg)h - (5)
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where the units of (pg)h are Ibs/in 2. The value of _s for I/4 mil aluminized

Mylar is approximately equal to 0.16.

Figure 2, taken from Ref. 4, shows a comparison of the propulsive efflcienc_

of the solar sail and several other propulsion systems. Specific impulse is

used as the measure of efficiency. It is seen that the specific impulse of the

solar sail increases (linearly) with mission duration and that it outstrips all

competing systems for mission durations greater than I000 days. The range of

values of lightness number used in Figure 2, .25 < _s < l.O, extends from a

value that is available with present technology to a value that seems feasible

with future development. The performance ranges for the other propulsion system

were selected in the same spirit.

Analyses of optimum interplanetary flight trajectories have been reported

by several solar sall investigators (Refs. 5, 6_ 7, 8), particularly for voyages

to Mars and Jupiter. Applications of the solar sail concept for other purposes,

including orientation control, station keeping, station changing, and micro-

meteoroid collection, have also been studied, Ref. 6 and 9.

In spite of favorable performance estimates, the solar sail was not

initially given serious consideration, due to the absence of credible solutions

for deploying, rlgidizing and orienting the extremely large surface areas that

are required. Table I shows a morphoiogy of some of the choices that are avail-

able in the design of the solar sail. Early rnvestlgators favored the circular

shape, which virtually defies deployment in large sizes. The more recent Helio-

gyro concept (Ref. 9), which employs the design choices underlined in Table I

(very slender, centrlfu_al force, reflectin 9 surface rotation) shows promise of

providing practical solutions for the problems associated with large size.

The Heliogyro is, in effect, a helicopter rotor operating in a space

environment. Its blades are made from thin reflecting sheets that are stowed on

spools prior to deployment. The rotation of reflecting surfaces is achieved by

pitching the blades about their lengthwise axes. Centrifugal force provides

effective bending stiffness and torsional stiffness for the b]ades. A sketch

of a two-bladed experimental model, proposed in Ref. 9, is shown in Figure 3.

Concept models of much larger multi-bladed vehicles for manned interplanetary

voyages are also described in Ref. 9.



The design concept of the Heliogyro borrows much from helicopter technology

including the use of centrifugal force to rigidize the blades, and the use of

blade_pitch for control. The use of cyclic and collective pitch controls to

produce lateral forces and moments and to impart initial spin during deployment

are discussed in Ref. 9. Calculations are made there of deployment times,

precession rates, and of the times required to perform such useful maneuvers

as planetary escape. The results show that the maneuver performance is good

and that the stress levels are low for vehicles ranging in size from the smallest

up to several hundred thousand pounds gross weight, even though the latter may

have rotor diameters of fifty miles or more. The calculations are, however,

based on the usual assumption made in helicopter performance analysis that

structural dynamic effects are negligible. Thus the rotor blades are assumed

to respond instantly to pitch inputs, and pitching moments due to flapwise

and chordwise motions are ignored even though the effective torsional stiffness

provided by centrifugal force is very low. The means for providing damping in

the absence of an aerodynamic environment were not discussed.

The purpose of the present report is to treat the structural dynamics of

the Heliogyro in such a manner as to provide a basis for engineering develop-

ment and to answer questions regarding concept feasibility that are raised by

dynamic considerations. The subject will be treated by the techniques of heli-

copter rotor dynamics, but differences between an Earthbound and a space environ-

ment, and differences in scale and proportion require that the treatment start

at an elementary level and that it carefully examine the basis of every assump-

tion. It will be convenient, for the estimation of the magnitude of effects,

to refer occasionally to the numerical values of parameters for a specific

representative blade design. That design, whose properties are listed in Table

2, will be called the Sample Blade.
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UNCOUPLED EQUATIONS OF MOTION

Since helicopter rotor blades are relatively slende r (a condition which

applies, a fortiori, to the HelTogyro blade), it is usual to analyze their

motion by means of engineering beam theory. The notational system that will

be used to describe blade motions is shown in Figure 4. The equilibrium

position of the blade is assumed to lie in a plane perpendicular to the axis

of rotation. The undeflected axis of the blade is assumed to be straight.

The assumption of initial straightness, which is made for convenience in

analysis, can be relaxed without difficulty. The independent degrees of

freedom of the blade at points along its axis are its translations (u, v, and

w), and its rotation, e, about the blade axis. Distortion of the cross-

sectional shape (e.g., by cambering) is neglected, or is treated by a secondary

analysis. In the case of the Heliogyro, chordwise camber requires special

consideration as will be shown later. Extensional strain parallel to the blade

axis is neglected on the assumption that the extensional rigldity is very large

compared to the bending and twistlng rigidities. Vertical and inplane shearing

flexibilities are similarly ignored.

All of the above assumptions, except as noted, self-evidently apply to

the sample Heliogyro blade whose properties are listed in Table 2. In addition,

the thinness of the blade permits us to ignore the elastic bending stiffness in

a plane normal to the blade chord and the elastic torsional stiffness, in com-

parison with the corresponding centrifugal stiffening effects.

An uncoupled analysis of blade motions is one in which the differential

equations for twist, O, vertical deflection, w, and inplane deflection, u, are

uncoupled. In such an analysis the coupling due to off-axis center of gravity

location, and the nonlinear effects of finite motions, etc., are ignored. The

uncoupled equations yield valuable information regarding vibration modes and

the dynamic response to excitation. The uncoupled small-motion equations,

which incorporate the assumptions which have been mentioned, are:

TW,S : @ @ @
" " _a2e (6)

-_(Io r _r) + p_2IO + p±_t-_-_= me

5



VERTICAL DISPLACEMENT: ® ®

(cha raw--- pc at 2 =ar z
(7)

IN-PLANE DISPLACEMENT:

a2 _TaZu, (C_h_ _u (_- h 8 u
+ pc-_-_-_-= fx (8)

The symbols that occur in the above equations are defined in the list of

symbols. In particular, o is the spanwise component of stress due to centrifugal

force. The symbols@,Q_@, and@ classify the terms according to their

origin as follows:

Q - terms derived from elastic stiffness

Q - spanwise stiffness terms derived from rotation (centrifugal

stiffening)

Q - local stiffness terms derived from rotation (gyroscopic stiffness

terms)

Q ordinary terms..inertia

The terms on the right hand side represent the loading per unit spanwise

length and also the coupling effects that will be developed later. It will be

noted that only the inplane displacement contains an elastic stiffness term.

The gyroscopic stiffness term in the first equation (which is sometimes called

the tennis racket effect) is stabilizing in the sense that it resists applied

moment. The gyroscopic stiffness term in the inplane displacement equation is

destabilizing but the combined effect of the second and third terms is stabilizing

(or neutral in the case of rigid rotation about the z axis). The equations have

been written so that they are correct when the blade properties (p, h, c, I, E)

vary along the span. The blade properties will, however, be assumed to be con-

stant in most calculations.

A set of boundary conditions is required in addition to the differential

equations. At the outboard end the boundary conditions are that no concentrated

forces are applied. At the inboard end the boundary conditions depend on the

nature of the body located at the center, and on the number of blades connected

to it. It is convenient, for initia] treatment, to assume that the center body

is massive so that translations (u, w) and the inplane rotation, _, are zero.

6
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If many blades are present, these conditions are also correct in the presence of

.....fin!te hub mass for many of the vibration modes (all except those with so-called

cyclic and collective symmetry, ref. lO). The root end boundary condition on

the pitch angle, 0, is that it must follow the motion Imposed on it by the pitch

control mechanism.

The boundary conditions should be applied at a short distance from the

center ]ine due to the finite length of the attachment fittings. Such offsets

are important for helicopter rotor analysis. Due to the extreme length of

Heliogyro blades, the boundary condition offsets are only a very small fraction of

blade span. Their effects will be treated by perturbation techniques applied

to the solutions for zero offset.

It is convenient, for the study of trends, to reduce the equations of

motlon to dimensionless form. This may be done by introducing the following

scaling for the independent and dependent variables.

Independent variables:

r

y = _ (9)

Dependent variables:

- u (11)
u -- "_"

- w (12)
IA/ =

In addition it will be assumed that the blade properties are uniform along the

span. For that condition the spanwise stress due to centrifugal force is

1 p_2(R2 rzor = _ - ) (13)

Dimensionless equations of motion are then obtained by dividing equation (6) by

pgzl and equations (7) and (8) by p_2chR. The results are:

TWIST:

2 ay I-Y2 + 0 + aT----E = (14)



VERTICAL DISPLACEMENT:

2 ;y\'"Y + = f,

INPLANE DISPLACEMENT:

1 _2 (K_2"_"_ 1 _ ((1-" 2)_U"_ - '-U" 4- _2"u"

2 ay2\_-_T/- _\. Y ay/ aT--'T= x
(]6)

-- _Z'where mo, and fx are the scaled loads and K is a dimensionless parameter,

El
K =

l
_- p_2chR'

___,
12 o°

(17)

0
0

is the spanwise stress at the blade root due to centrifugal force,

l
c_° = _--p_2R2 (18)

K, which is the only parameter appearing on the left hand side of the

equations of motion, is a measure of the elastic chordwise bending stiffness

relative to the stiffness provided by centrifugal force. Since equation (16)

is dimensionless and since the range of y is O < y < I, the magnitude of K

provides a direct indication of the relative magnitude of the elastic bending

stiffness. For the sample blade whose properties are listed in Table 2,

K = ---'_T • - = 833 x lO (]9)12 1 \104/ "

For comparison, the value of K for a conventional helicopter blade is of the

order of unity.

8



UNCOUPLED VIBRATION MODES

The homogeneous equations of motion, when written in dimensionless form,

_ontain only a single parameter, and it has been shown that that parameter, K, is

small for Heliogyro blades. If K is set equal to zero and if sinusoidal motion,

e i_T, is assumed, the uncoupled homogeneous equations become

TWIST:

L_

!

I_2d__dyII-Y2)?_) + (_-m _ I) 0 = 0 (20)

VERTICAL DISPLACEMENT:

1 L l_y2)a  + = 0d

2 dy _ _y/
(21)

INPLANE DISPLACEMENT:

I d C(i_y2)3___+ (--2 + i) "6-= 0
2 dy \" _y/

(22)

All three equations are variations of Legendre's equation, for which the

standard form is

d__((l_y2)___.___i/,-l_\+ n(n+l)x = 0
dy \ uv/y/

(23)

The parameter n in equation (23) may be considered to be an elgenvalue whose

value is determined by boundary conditions. For the range, 0 < y < l, the eigen-

values for zero displacement at y = 0 are the set of odd integers, and the elgen-

values for zero slope at y = 0 are the set of even integers. The corresponding

eigenvectors are the Legendre polynomials P (y), listed below.
' n

n Pn(y) P (0) P (I)n n

0 1 I l

I y 0 I

l
2 _ (372 - I) -I12 I

I
3 _ (5y 3 - 3y) 0 I

l
4 _ (35y _ - 30y 2 + 3) 3/8 I

I
5 _ (63y s - 70y 3 + 15y) 0 I

9



Formulas for the vibration mode frequencies, obtained by comparing equation

(23) to equations (20), (21) and (22), are:

TWIST:

-- _ yn (n+l)_--6 -= 2 + 1 (24)

VERTICAL DISPLACEMENT:

= _ (n+l)
2

(25)

INPLANE DISPLACEMENT:

-- C_ =-_n (n+ 1 )°0=_ 2

i

l (26)

The scaled frequency, _, is the value of the vibration frequency in cycles
i

per revolution. Table 3 gives the numerical values of _ for the first four modes

of each type with zero root end motion.

It is noteworthy that the vibration mode frequencies bear a fixed relation-

ship to rotor speed, regardless of size, shape or blade material properties. It

is fortunate, from the viewpoint of resonant excitation due to environmental

effects, that none of the higher (n > l) vertical and inplane mode frequencies

are exact harmonics of rotor speed. The twist mode resonance at 4/rev. is not

serious because damping can easily be introduced into the pitch degree of freedom,

as will be shown.

The lowest vertical and inplane modes at n = 1 correspond to rigid body

rotations of the blade about a fixed hub. The vertical mode frequency, which is

at 1/rev. in a coordinate system that rotates with the blade, occurs at zero

frequency and also at 2/rev. in a nonrotating coordinate system. These frequencies

correspond to the precession and nutation of the vehicle as a whole.

10
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i Only two of the solutions with even order Legendre polynomials have

_i; _ practical significance. They are the lowest order (n = O) twist mode whichhas

' _requency of one cycle per revolution, _and the lowest order vertical mode

Whose frequency is zero. The vertical mode is trivial since it simply describes

• rigid body translation parallel to the axis of rotation. The existence of the -

! twist mode, on the other hand, demonstrates the important result that a cyclic

I pitch imposed at the blade root at a frequency of one cycle per revolution will •

I result in a uniform response along the blade span. This kind of excitation is

L employed in several types of maneuvers, see reference 9.

At excitation frequencies other than I/rev., the pitch response to excitation

imposed at the root is not uniform due to the imbalance between the inertia and

the local centrifugal stiffening terms. Figure 5 is a plot of the ratio of blade

tip response to blade root excitation as a function of the exciting frequency,

obtained by numerical integration of equation (20). The result for zero excita-

tion frequency (Stip/Sroot = .319) is important because it is the steady state

limit for collective pitch excitation.

: _ The solutions that have been presented for uncoupled inplane modes are sub-

ject to the assumption that the elastic chordwise bending stiffness is zero.

Except for the lowest mode, the error due to this assumption is unimportant for

i the very slender blades envisaged for the Heliogyro. The error in the lowest

(n = l) mode depends on the boundary condition for chordwise slope at the blade

root. For modes with collective symmetry (modes in which all blades execute

identical motions) the error is zero because the appropriate boundary condition,

which is that the chordwise bending moment is zero, is satisfied by the assumed

eigenvector. For all other types of modes, the appropriate boundary condition is

that the chordwise slope is zero, which results in a finite value for the lowest

mode frequency.

An analytical expression will be derived for the lowest mode frequency on

the assumption that the chordwise bending stiffness: parameter, K, is small but

| -finite. The approach will be to derive an expression for the chordwise deflection

that satisfies the boundary conditions at the root (_ = O, d_/dy = 0), that

i satisfies the differential equation the and thatapproximately near root,

asymtotically approaches the straight line (_ _ y) predicted for K = O. The

expression for deflection will then be substituted into a Rayleigh quotient to

obtain an approximate frequency.

ii
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Neglecting inertia and local centrifugal stiffening terms in equation (16),

the homogeneous differential equation for inplane bending near the root, y << l,

is approximately

d45 d25

K dy_ dy_ = 0 (27)

A solution which satisfies the differential equation and the boundary

conditions, and that remains finite as y increases is

--So -A/K 1 - (28)

Note that, for y >> "_, the deflection is approximately a straight line

that intersects the y axis at y =A_.

The kinetic and potential energy functions for the blade are easily identi-

fied by examination of the terms in equation (i6), They are

!

T = 52dy

o

(29)

¼f 1 [/d2a\2 ]v-- (30)

The Rayleigh's quotient is

(_2 =

f' 2521 dy

fl D2dy

o

(3_)
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If equation (28) is substituted into equation (31), and if _ is treated

as a small parameter such that higher order terms may be neglected in comparison

with lower order terms, the resulting expression for the lowest inplane frequency.

is

=_ (32)

Straightforward analysis, reference II, Of a uniform articulated rotor blade

with lag hinge offset, e, shows that the lowest inplane frequency is (approximately)

i

i

|

=_ (33)

By comparison of equations (32) and (33), the "effective" lag hinge offset

for a Heliogyro blade is

e : RV_ -_ (34)

For the Sample Blade design, K = :'833 x IO -41 so that _ =C_(.833xI0-_)_ _

= .l182/rev. From the form of equations (17) and (32), it is seen that the

frequency of the lowest inplane mode is inversely proportional to the square root

of the blade aspect ratio, R/c.

A rough estimate of the effect of chordwise bending stiffness on the higher

modes can be obtained by substituting the assumed displacement function for K = O

into the potential energy function, equation (30). The resulting frequency is

= _-o(1 + _) (35)

where _ is the frequency for K = O and
o f" I

Id2_\2!

Ve "Jo Ktd--_) dy

' 1-y ay
o

As an example consider the second mode (n = 3) for which the deflection function

(Legendre polynomial) is _ = 5y 3 - 3Y.

13



For this function,

and the result is

2
(G) = 25y 6 - 3Oy _ + 9y 2

_yy/ = 225y - 90y 2 + 9

(d%_ 2
\d-7/ = 900y2

(37)

= 52.5K (38)

For the Sample Blade, K = .833 x lO-_and E = .OO436. The importance of the

chordwise bending stiffness increases as the mode index increases. For high

order modes the eigenfunction is approximately a sine wave,

= sin 2_Ty (39)
X

where _ is the wavelength. An estimate of the effect on frequency is obtained

by neglecting 2G 2 and replacing l-y 2 by 2/3 in the denominator of equation (36).

Thus

_4 3_T2 K

The condition under whlch the elastic energy and the potential energy of centri-

: Ve/2V = 1/2, orfugal stiffening are equal, is c c

= _J_-_ (41)

For the Sample Blade, K = .833 x lO -4 and X = .0722. The number of nodal points

along the span is approximately equal to 2/X, This is a large number for the

Sample Blade, again indicating that the elastic bending stiffness has a negligible

effect on frequency in the practical range of excitation.
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DAMPING DEVICES

_k

Heliogyro blades have almost no inherent damping. Aerodynamic forces,

which provide most of the damping for conventional helicopter rotors, are

totally absent. The effectiveness of internal structural damping is small

because elastic stiffness accounts for only a small part of the total stiffness'.

In fact, only the inplane modes have appreciable structural damping and then

only in the higher modes. Damping for all other blade modes must be supplied

by damping devices.

Damping is required in structures primarily for two reasons. The first is

to limit the amplitude of the response of the vibration modes to sustaTned tran-

sient excitation (which over a long period of time may be regarded as either a

periodic or as a random excitation). The second is to suppress instabilities

involving structural deformation which may result from control feedback or non-

conservative environmental processes.

Both of the above reasons apply to the Heliogyro. A primary source of

transient excitation is the blade pitch control mechanism which can execute

abrupt motions in response to maneuver commands. Another source of dynamic

excitation "s the _olar illumination which can, in conjunction w[tqh cyclic

blade pitch, produce periodic radiation pressure fluctuations at several of

the lowest harmonic orders of rotor speed. Fortunately, as has been shown,

there are no prominent resonances of vibration modes with the lower orders of

rotor speed. Gravity gradient also produces periodic load fluctuations of

relatively small size.

The primary means for combatting periodic excitation is to avoid resonances

between exciting frequencies and natural modes. As long as this is done,

periodic excitation produces no requirement for damping. The response to random

excitation, on the other hand, is inversely proportional to the square root of

the damping (as measured by the ratio of the modal damping force to the modal

inertia force). Thus, even a very small amount of damping is effective in re-

ducing the amplitude of response to sustained transient excitation.

15



The Heliogyro is potentially subject to structure-autopilot instability

because it requires an autopilot in order to maintain trimmed flight and to

execute coordinated maneuvers. Even though the gain of the autopilot may be

very small at frequencies corresponding to the higher vibration modes, some

_mall level of structural damping is required in order to avoid instability.

Thermal expansion is a source of instability that has been troublesome for

long booms on space vehicles. This mode of instability involves differential

thermal expansion between the illuminated and nonilluminated sides of the boom,

which produces a change in the illumination incidence angle which, in turn,

changes the temperature distribution. Thermal time lag plays an important role

in determining the phase of the feedback. Fortunately for the Heliogyro,

differential thermal expansion between the leading and trailing edges of the

blades is very small so long as the blades are reasonably flat, and the thermal

time lag is small due to the thinness of the blades. Nevertheless, some small

amount of damping is probably required to prevent this kind of instability.

Since it has been determined that damping devices are required, it is

pertinent to seek practical ways of providing them and to estimate the damping

levels that can be achieved. The most desirable locations for the damping

devices are at the ends of the blade. Distribution of devices along the blade

is undesirable because they will increase the bulk of the stowed configuration

and will reduce the reliability of deployment. The blade tip is not a practical

location for damping devices because significant forces cannot be produced there

except at the expense of a significant tip mass. The most practical location

for damping devices is at the blade root attachment, which, incidentally, is the

location chosen for conventional helicopter rotor blades.

As long as the motions of the blade are substantially uncoupled, separate

devices must be provided for pitch, vertical displacement and inplane displace-

ment. A higher level of damping can be provided for pitch than for the other

degrees of freedom, which is fortunate because of the important role played by

pitch motions in maneuver control.
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Pitch Damping
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Damping is conveniently provided for the pitch degree of freedom by means

of a parallel combination of a spring and a dashpot between the control actuator

and the blade as shown in Figure 6. In order to achieve maximum damping, the

damper spring should be of the order of magnitude of the blade torsional restraint

due to centrifugal force (p_21R), and the time constant of the damper (Bd/K d)

should be of the order of the period of one of the lower torsional modes. A

parametric investigation was made of the idealized model shown in Figure 6 in

order to determine an optimum damper combination. The criterion used was the

number of revolutions for the blade tip motion to damp to within I0% of its

steady state value in response to a collective pitch input. The collective

pitch input was a ramp function that achieved its final value in one-half

revolution, as shown in Figure 6. Results for a typical case are shown in

Figure 7 where the blade tip response, 0ti p, and also the blade root response

just outboard of the damper, 0o, are plotted versus time measured in rotor

revolutions. The results for all cases are Summarized in Figure 8 where it is

seen that the selection of the damper parameters is not critical.

An eigenvalue ana]ysis was also made made of the configuration whose

transient results are shown in Figure 7 in order to determine the effects of

the damper on the torsional vibration modes. The results are presented in

Table 4.

The table shows, as does Figure 7, that only the lowest mode has significant

response after two revolutions. Comparison of the frequencies listed in Table 4

with the results for the blade without damper given in Table 3, shows that the

damper slightly reduces the frequencies of the lowest two modes. The increases

shown for the 3rd and 4th modes are the result of finite element approximation.

It is instructive to calculate the physical magnitudes for the damper and

the spring for the Sample Blade whose properties are listed in Table 2. The

control stiffness is

K d = 2p_2IR = _ _2P c3hR

l c3h (42)
= y Oo--C-

1 (120) 3 x .25 x 10 -3

= _ x (1000) x 120,000
= 1.2 in-lb/rad.
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The control damping is

2_

Bd = -_ K d = .O31--_-x 1.2 = 242 in-lb/rad/sec (43)

The control stiffness, and consequently also the control moment, is extra-

ordinarily small in view of the size and weight of the rotor blade, indicating

that the pitch control mechanism will be delicate and that friction about the

control axis must be minimized. Perhaps the best way to achieve the required

control stiffness and damping is by means of the output impedance of an electric

motor which can, with appropriate servo control, be adjusted to virtually any

value. The effect of friction can be minimized simply by increasing the magnitude

of the control stiffness at the expense of a decrease in the damping decay rate,

as shown by Figure 8. A design concept for a complete Heliogyro blade retention

system will be introduced after the means for damping inplane and vertical blade

motions have been discussed.

Inplane Damping

Inplane bending deflections are the only blade motions that have appreciable

structural damping. The theory presented earlier for the effect of elastic

stiffness on inplane mode frequencies can also be used to estimate mode damping.

If ge is the structural damping coefficient of the elastic material, then the

modal damping parameter is, approximately,

V
e

g = v--ge
C

(44)

where Ve/V c is the ratio of the elastic energy to the potential energy of centri-

fugal stiffening. From equations (36) and (38), the energy ratio for the second

inplane mode is

V
e

_-= I05K (45)
C

where K is the inplane bending stiffness parameter. For the Sample Blade,

K _ .833 x 10 -4, so that
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g = 105 x .833 x 10 -4 ge

(46)

:: = .00872 ge

Thus, the effective damping of the second mode is less than 1% of the

material damping. The effectiveness of structural damping increases rapidly

for higher modes, as indicated by equation (40). It is also high for the lowest

mode but it cannot be considered adequate due to the very low natural frequency

of this mode.

A practical design concept for an inplane damping device is a damper that

resists relative rotational motion between the blade root and the center body,

The damper must have some stiffness in order to maintain the azimuth angles

between blades (provided that there are more than three blades).

An idealized model for the inplane motion of the rotor blade when vibrating

in its first mode is shown below.

Kd(l+igd)

B1ade _-i

__ K_ eL ,-----,

The damper is represented by a spring whose value is given an imaginary

part to represent hysteresis damping. The blade is represented by its inertia

for rigid body rotation about the blade root, I¢, and by a spring K_, that is

calculated from the inertia and the frequency of the lowest mode

KS = _2I_

Using dimensionless coefficients,

(47)

It = I/3 (48)
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and, from equation (32)

(49)

Thus, in dimensionless form,

K = 7 (50)

The damping of the first mode is, approximately, for gd << l,

V d

gi = V d + V gd
(51)

where Vd is the energy stored in K d and V is energy stored in K . Since the

energy distribution of springs in series is inversely proportional to their

stiffnesses

K

g i = Kd + K gd
(52)

Evidently maximum damping is achieved when Kd is small compared to K .

An idealized model for vibration in the second inplane mode is shown below

L B1_de __

Damper _ K I

"_ Kd (l+ig d)

The blade is represented by its modal mass, I2, and modal stiffness, K2,

referred to the slope, _b' at a point near the root, The equivalent elastic

coupling spring, K , that was calculated from the properties of the first mode,

is connected between the damper and the blade, The modal mass is calculated

from the deflection function _= _b(y - _ yS) and the kinetic energy equivalence,

! -2 2 = ] f_2dy (53)T = _ Z2w2Cb



Thus,

and

in dimensionless units,

I 4r2 = (y _ y3)dy = -_

! 4 20

K2 = _212 = 5 x _ =

. The damping of the second mode is, for gd << l,

V d

g2 = V d + V¢ + V 2 gd

|

| where, in addition to previously defined terms, V 2

Let K Kd

K_ + Kd!

is the energy stored

be the equivalent stiffness Kd K
of and in series. Then

! V_ + V + V_ = I_.¢ 2(K +'_)
o l_ 7_. 2 b 2

and

' 1 2"

V d + V = _" _b K_

so that, using equations (51), (52) and (58)

V. V.+V
=____a , _

g2 V d + V Vd + V + V2 ° gd

K
_ _ . _ ....
- Kd + K K2 + _ Ud

K_

Kd + K_

gd

• K l + l
l + 2
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(54)

(55)

(56)

in K2 .

(57)

(58)
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The maximum value of g2' obtained by differentiating equation (59) with respect

to Kd, occurs when

Kd = K_ +
2 K_ (60)

For very slender blades, K_ << K2, so that nearly optimum second mode

damping is obtained by setting Kd = K . Using this value in equations (52)

and(S9),

g2 = , Igl -- _" gd

l I (61)

gd - _ gd

2K2 1 + 80
l +-- "_

K_

For the Sample Blade /K-'= .00931, so that

I

gd

g2 = 13-'--7
(62)

A typical value of gd for a good elastomeric material, such as silicone

rubber, is 0.30. For this value of material damping the modal dampings for the

Sample Blade are gl = .15 and g2 = .00109. T_e corresponding times to half

amplitude, measured in revolutions, are

ln2
= ----=--= 12.5 revs

tl _gl_l

In2
t2 = _ = 90.7 revs

_g2_2

1 (63)

The relatively long decay time for the 2nd mode is a direct result of

blade slenderness as expressed by the elastic stiffness parameter ¢r_-_. From

the definition of K, equation (17),

o

(64)
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Thusly=other factors remaining equal, the damping of the second inplane mode (and

_f higher modes) is approximately proportiona] to the ratio of blade chord to

biade span. The inability to provide adequate damping for inplane modes may set

a limit to blade aspect ratio,

Somewhat better results can be achieved with viscous dampers. A configura-

tion using two springs and two viscous dampers is shown below

Bdl Bd2

O, _u O

..... i An eigenvalue analysis was made for the inplane vibration modes of the

Sample Blade design using this damper Configuration with the following dimen-

sionless component values

Kdl = Kd2 = 2K¢

_lBdl 4
(65)

_2Bd2 3

|

The springs were selected to be equal and to give the same stiffness as

the hysteresis damper described earlier, The dashpots were selected to provide

maximum damping for the first and second modes. The results of the analysis are

tha resence rshown in Table 5. It will be noted t the p of the dampe slightly

(seereduces the lowest mode frequency discussion following equation (34)). The

i increase in the higher mode frequencies over the values for the blade without

23
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bending stiffness, see Table 3, is partly due to bending stiffness but mostly

due to finite difference approximation. The damping for the first mode is

slightly less than that for the silicone rubber damper but the damping of the

second mode is substantially larger. Unfortunately the vibration frequencies

for real blades are so low (their periods are of the order of minutes) that

the physical realization of viscous dampers may not be practical.

As in the case of the pitching modes, it is instructive to estimate the

physical magnitudes of parameter values. The physical value of the damper

spring for the Sample Blade is

* = pch_2RKd 3Kd

=(2Oo)(ChR)(2 l- i/K_)

= 2000 x 3600 x.004655

= 33600 in-lb/rad. (66)

This stiffness can, for example, be provided by an extensional spring with

a spring constant equal to 336 Ib/in located ten inches from the hinge axis.

It will be shown later that a damper containing less than one cubic inch of

silicone rubber will satisfy strength requirements.

Vertical Damping

A problem encountered in designing a damper for vertical blade motions is

that the blade has essentially no bending stiffness to react the moment applied

by a rotational damper. Effective bending stiffness can, however, be provided

by structural reinforcement over a short span of blade at the root end. A

design concept is shown in the following sketch.
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..... DAMPER _. 8RACE

I

Kd I /--TOP SIIEET

R_)LLEF,--/ I _-- BOTTOM SHEET
I
p rb

The reinforcement consists of a brace made from two thin sheets of material

similar to the blade material. Additional spanwise reinforcing fibers are

attached to the sheets. In the stowed configuration, the bottom sheet is back-

rolled under the top sheet.

If the brace and the damper were infinitely rigid, the blade would be

provided with a flap hinge offset at a distance rb from the roller, and the

flapping moment at the roller would be

M r = rbTo_ o (67)

where To is the centrifugal tension and Bo is the flapping angle just outboard

of the flap hinge. An idealized model for vertical blade motion, including an

elastomeric damper and a brace wlth finite stiffness is shown below.

\\ \\

(68)
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In the model I. and K. are the modal inertia and stiffness of the ith mode
I I

w h

referred to _h _ -- , the normalized displacement at the hinge. K is the
rb c

centrifugal stiffness associated with the increment of span occupied by the

brace. Its value, in physical units, is

K*c = rbTo (69)

or, in dimensionless form,

Yb

Kc 2 (70)

where Yb = rb/R" The value of the brace stiffness is, in physical units

, (EA) bd2

Kb = 2r b
(71)

and, in dimensionless form

l (EA)b (._)2
Kb = _Yb o cho

(72)

(EA) b is the extensional stiffness of one sheet.

The modal inertia, li, can, as in the case of inplane bending, be evaluated

from the spanwlse integral of kinetic energy. Assuming that the mode shapes are

adequately described by the Legendre polynomials discussed earlier, the dimen-

sionless values of the modal inertias and stiffnesses for the first two modes,

referred to blade flapping, Bo, just outboard of the hinge are

l

zlO = 3.

4
Z2o=

1
Kio = $12zI0= 3"

K20 = _22120 24

(73)
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A transformation of these quantities to the normalized hinge displacement,

_h' is provided by the ratio of the moment on the roller, Mr., given by equation

(67) to the generalized force acting on Bo,

= K.o13 °Mo ,

In dimensionless form, the moment on the roller is

Y

M r = _ Bo

(74)

(75)

i
7

i

I

The blade Inertia, I

fore,

i' and stiffness, K I, in the idealized model are, there-

Ii \%/Ii° \ iot ,o

('r_':_/ _,oV_io,S,o

(76)

Substituting from equation (73) into equation (76)

i

i
I
i

i

i

63
12 = _ Yb 2

K l = _- yb 2

(77)

As in the case of inplane motion, the ratio of modal damping to material

damping is approximately equal to the ratio of the energy stored in the damper

spring to the total potential energy. Thus

Vdgd (78)
= + V igi Vd + V b + V c

2?



The simple idealized model can readily be analyzed to produce the energy

ratio in terms of stiffnesses. If it is assumed that Yb << I, then, to a good

approximation,

Ki_ _ b )2
: (79)

gi gd'_d_'c +' K b

where _b = KbKd/Kb+Kd" Cursory examination of equation (79) shows that maximum

damping is obtained by making K b large. This may result in a significant weight

penalty so that selection of an optimum design involves a tradeoff between weight

and damping.

As an example for the purpose of estimating the order of magnitude of

damping that can be expected, consider the Sample Blade with a brace described

by the following parameters:

d = l.O ft

rb = 50 ft

Eb = 30 x lO 6 psi(steel)

A b = .010 in 2

Then the dimensionless stiffness of the brace is

1 300,000 (ITO_ 2 0-4Kb : T_ x 30 x = 50 x l

The weight of the brace is 3.6 Ibs which is 1.9% of the blade weight.

blade stiffness parameters are, from equations (70) and (77),

K l = .1875 x lO -4

K2 = .1642 x I0 -4

K = 25 x lO -4
c

An optimum value of K d can be found for given values of K b and Kc.

The

For the
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parametersthat havebeenassumed,the optimumvalue is near

Kd = 20 x lO-4

Thecorrespondingvalues of modaldampingare, assumingan elastomeric

damperwith gd = 0.30,

i

Z
I

gl = 3.73 x lO -4

g2 = 3.27 x lO-4

These values are only about one-third as large as the damping for the second

inplane mode. They can be increased at the expense of an increase in brace

length and brace weight or by an increase in the diameter of the roller. The

diameter of the roller can be increased, in the deployed configuration, by the

extension of arms that are stowed inside the roller.

The physical value of the damper stiffness is

Kd = 14,400 in-lb/rad

which is about four-tenths of the value of the inplane damper stiffness.

Damping of Modes that Involve

Rotations of the Center Body

If all blades are identical, certain types of modes will exist in which

the inplane and vertical dampers discussed above are |neffective. They are

modes in which, due to the symmetry of the blade motions, the blade bending

moments are zero at the center of rotation. There are two classes of such modes

as shown in Figure 9.

It will be noted that the modes of each class involve a rotation of the

center body. It would, therefore, appear feasible to damp them by attaching

damping devices to the center body, or by attaching devices, such as gyroscopes,

that provide a significant impedance against which the blade dampers can react.
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Unfortunately the size of the center body will probably be so small compared

to the blade radius, that appreciable damping cannot be provided in this manner

without a large weight penalty.

A more fruitful approach is to alter the characteristics of the blades so

that the bending moments at the hub do not vanish in any modes, except, of

course, in the lowest modes which correspond to rigid body motion of the entire

vehicle. For a two-bladed rotor, this can be accomplished by making one blade

longer than the other so that the center body is no longer at the center of

rotation. For multibladed rotors, a convenient technique is to taper the chord

of some of the blades so as to alter their mode frequencies. (Simply changing

blade length will not significantly alter the mode frequencies.) For example,

the second vertical mode of a blade whose chord is linearly tapered to a value

of zero at the tip is l.%5/rev compared to 2.449/rev for a uniform blade, and

the second inplane mode is 1.68/rev compared to 2.236/rev. These differences

are large enough so that, considering the relatively small influence that hub

rotational constraints have on blade mode frequencies, the modes of the tapered

and uniform blades will be virtually uncoupled. Thus, one set of blades will

be nearly motionless in the modes of the other set and the dampers will be

effective. An attractive configuration is a symmetrical six bladed rotor with

three uniform blades and three tapered blades. Rotors with fewer blades must

be unsymmetrical in order to make the dampers effective for all modes.

One last mode of interest which is not damped by any of the techniques

discussed so far, is the nutation mode of a vehicle with three or more blades,

in which the entire vehicle vibrates as a rigid body at approximately two

cycles per revolution. In the rotating system this mode appears as a blade

flapping mode at one cycle per revolution. Active control feedback can be

used to damp the nutatlon mode. Also it may be feasible to damp the nutation

mode by means of a tuned absorber that consists of a long boom attached to the

center body in the direction of the spin axis.

A solution to the damping problem which has the advantage that it applies

to all modes that involve rotations of the center body, including the nutation

mode, is to employ an auxilllary set of counter-rotating blades. The counter-

rotating blades, which must have their own dampers, need only be large enough to

provide an appreciable impedance to hub rotation. They can be fabricated from

high strength materials in order to minimize weight.
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BLADE RETENTION SYSTEM

i The need for blade dampers about all three rotational axes has been

! identified and appropriate values of stiffness and damping have been calculated

for the Sample Blade design in the preceding s_ction. The recommended properties

of the dampers are as follows:

Y -

L

Spring

Constant

Motion Damper Type (in-lb/rad) Damping Constant

Pitch Electric Motor 1.2 Bd = 242 in-lb/rad/sec

Vertical Silicone Rubber 14,400 gd = 0.3

Inplane Silicone Rubber 33,600 gd = 0.3

+

i

i

ll

E

i

_--:

i

[

It is evident, from comparison of the spring constants that the friction

about the pitch axis should be as small as possible. Additional requirements

for the blade retention system are that it support the centrifugal load (30 Ibs),

that it accommodate blade motions of the required amounts, and that it withstand

environmental hazards. The major environmental hazards are shock and vibration

(during launch) and micrometeoroids.

The available Fitch motion should be large in order to maximize maneuver

capability. At least 45 ° should be provided, The required vertical flapping

accommodation can be estimated to be a reasonable factor times the steady coning.

Table 2 records the blade root tension (30 Ibs) and the total thrust for normal

solar illumination _0188 Ibs) on the Sample Blade. Thus, assuming that the

center body is much heavier than the blades, the root coning angle is

.0188
Bo _ 3_ _ .000626 rad

It seems reasonably conservative to assume dynamic flapping of equal magnitude

so that the total required flap angle accommodation is approximately .0013 radian

.O75 ° .
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The required inplane bendingmomentcanbe estimated from the analysis of
maneuvers. A reasonablysevere maneuver(suddenapplication of cyclic pitch) is

studied in a later section of this report. Theresults showthat the peak in-
plane bendingmomentis 13.5 in-lbs per radian of applied cyclic pitch. It seems
reasonablyconservative, therefore, to take twice this value, 27.0 in-lbs, as
the design inplane bendingmomentfor the damper. Thecorrespondingangular
deflection of the damperis

27 = .000802rad.ACd=

Weare nowable to calculate the required volumeof silicone rubber for
the vertical and inplane dampers. Fromthe equivalenceof two energy expressions

V 1 T 2 1 Hd2=-- Vor = --- (80)
2 G 2 Kd '

the required volume of material is

G Md2
Vol = --_ (8l)

T 2 Kd

where G is the shear modulus and T is the allowable shear stress. The shear

modulus for silicone rubber is approximately I00 psi. A conservative estimate

of the fatigue endurance limit is 5 psi. The required volume of material for

the inplane damper is, therefore,

lO0 (27.0) 2

Vol =--(--_x 33,600 = .087 in 3.

The flapping moment at the roller for a rigid damper and a rigid brace is,

from equation (67),

M r = rbTo6 ° = 600 x 30 x.0013 = 23.4 in-lb.

For the damper design studied in the previous section, the moment applied to the

flexlble damper is 36% of this value, or 8.4 in-lb. The required volume of

material for the vertical damper is, therefore,
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I00 (8.4)2
Vol = _ x l-_-- .020 in 3

A design concept for the blade retention system is shown in Figure 10.

It is similar, in many respects, to retention systems currently in use on

several light helicopters. Centrifugal tension is taken by three stranded wire

cables which can accomodate large pitch motions without appreciable torque. The

maximum pitch angle is approximately ±55 ° . The assembly includes only a single

bearing which carries no thrust. The values of the design shear loads for the

bearing, which are equal to the design bending moments for the damper divided by

the moment arm (ten inches), are 2.7 Ibs. Tnplane and .84 Ibs. vertically.

Assuming that the bearing radius is I/4" and that the coefficient of friction is

0.02, the maximum friction torque is

l
T = _/(2.7) 2 + (.84) _' x _- x .02 = .014 in-lb.

The corresponding break-away pitch angle is .O14/1.2 = .Oil6 rad = 0.67 ° , which

is certainly tolerable.

The pitch drive shaft passes through a central hole in the pitch bearing

and is attached directly to the rotor of an electrical motor. The friction

loads on the drive shaft should be negligible.

The pitch case, the meteoroid shield and the droop stop ere designed to pro-

tect the mechanism from environmental hazards.
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FORCES DUE TO SOLAR ILLUMINATION

Figure II shows the coordinate geometry for a rotating blade that is coned

through an angle B with respect to the plane of rotation and subsequently pitched

through an angle e with respect to a tangent to the cone of rotation. A further

rotation, _, about the normal to the blade produces no change in the radiation

pressure and need not be considered. The illumination lies in the _,z plane

at an angle y with respect to the axis of rotation.

The following expression is derived in ref. 9 for the normal pressure on

the blade surface under the assumption that the coefficient of reflectivity is

unity.

Pn = Po [(sin O sin _ - cos 0 sin _ cos 9) sin y + cos O cos B cos y]2 (82)

where _ = _t, is the azimuth angle relative to the plane of illumination. The

components of vertical and inplane load for use in structural dynamics, equations

(7) and (8), are

frz = Pn c cos O

frx = Pn c sin 0

(83)

The moment about the pitch axis due to solar illumination is zero provided

that the reflectivity of the surface is uniform and that the blade is not cambered

in the chordwise direction. The effects of such nonuniformlties will be dis-

cussed later.

Equations (82) and (83) are sufficiently general for most purposes. They

are, however, nonlinear in the motions (0, B), so that it is desirable for con-

venience in analysis to derive linearized expressions for the loads under the

assumptions of small motion. Some expressions are presented in Table 6 for a

number of different cases. Since B is always very small, case 5 of Table 6 is

sufficiently general for all practical cases. It shows that, if 0 varies cyclicly

= sin 4, and if the illumination is not parallel tothrough a large angle, 0 Bc

the axis of rotation, the vertical exciting force will include harmonic components

with prominent amplitudes up to the fourth harmonic, and that the inplane exciting

force will include prominent harmonics up to the fifth.
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:::_Another important fact is that, since _ is very small and may be neglected

in comparison with 0, the significant coupling is from the pitch degree of free-

dom to the vertical and inplane degrees of freedom and not otherwise. Even so,

the magnitudes of the coupling coefficients are very small when expressed in

dimensionless form. For example, considering case 4 in Table 6

_o
frx P°R cos 2 y • _ (84)Trx =_= O cos 2 Y " 2-'o"-E= 0o 2

o

where B° is the blade root coning angle under the assumptions that the center

body is much heavier than the blades and that the illumination is parallel to

the axis of revolution. For the Sample Blade design the value of _o is 6.26 x

10 -4 rad.
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MECHANICAL COUPLING DUE TO BLADE DEFLECTIONS t

The equations of motion for a rotating beam that is slightly curved include

small terms that couple the vertical, inplane, and pitching motions. Since the

curvature of Heliogyro blades is small, the coupling due to curvature would be

only a slight concern if the torsional stiffness were not also very small. It

is seen, however, from equations (6) and (8) that the ratio of the effective

torsional stiffness (Orl) to the inplane bending stiffness (El) is equal to the

spanwise strain which, of course, is small. Thus, a detailed analysis is required

in order to determine the significance of the coupling terms.

It is shown in the Appendix that the pitching moment per unit length due

to curvature may be expressed as

_B ME _ _ M8me =_T
(85)

where 8 and _ are vertical and inplane slopes of the blade (see Figure 4) and

MI_ and M E are the vertical and inplane bending moments. The bending moments

are related to blade curvature via the bending stiffness. Ignoring the flapwise

bending stiffness about an axis lying in the blade chord, and assuming that the

pitch angle, 0, is small, the relationships are

M El - e_-_ + M_o

= -EZe -_r - eM_o (87)MI_

Substitution of equations (86) and (87) into equation (85) produces the

result

mo + "I _8 M /_8
t-_--_r+ _o\_-_-+ e-_r) (88)

Equations (86) and (87) are correct to second order in the motions (_, 8, e)

and equation (88) is substantially correct to third order. The quantity M is
to

the chordwise bending moment due to initial stress. Its major source is the lack

of straightness introduced in the manufacturing process. When the blade is

deployed it is straightened by centrifugal force, and the initial curvature is
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converted, almost completely, into a chordwise bending moment. Subsequent pitch-

ing of the blade rotates the moment to produce a vertical component as well.

Coriolis forces are another source of coupling between the inplane and

vertical motions. For an undeflected blade the Coriolis forces acting in the

inplane and radial directions are

_v
fx = 2pch_ Tt

fy = -2pchO _u

(89)

where u and v are respectively the inplane and radial displacements. When the
_w

blade is flapped3., through an angle 6, the velocity normal to the blade, -_-_-,has

a component -_t in the radial direction and the radial force, fy, has
a com-

ponent -Bfy normal to the blade. Thus the normal and inplane components of

Coriolis force are

i
i

fcx= -2pch_6 _w

_u
fcz= 2pch_6 _T

(90)

The additional normal and inplane loads due to equations (86), (87) and (90)

are

o)fz = 2pchO6 _ + _ le _ + eM

fx = -2pckQl3_-_+_ Ele _- M o

(91)

(92)

The dimensionless forms of the coupling terms given by equations (88), (91) and

(92) are (_ (_ (_)

_e : _ : 2-_o - \ Sy/j + 2-'_-oN N + 2-TTo--+ e (93)
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(94)

(95)

The significance of each term is determined by comparing its size with the

terms on the left hand sides of equations (14), (15) and (16). The latter terms

are of the order of the scaled deformations (8, _, and u--).

The properties Of the Sample Blade design will be used in order to obtain

a quantitative evaluation of the coupling effects. In so doing it will be

assumed that the vertical deflection is of the same order as the static deflec-

tion

B o

(96)8s: l+y

and that the inplane deflection is of similar size. The latter assumption will

be justified later. It will also be assumed that 8 is of the order of unity.

The value of 6o for the Sample Blade is 6.26 x lO-4 rad. Using this value and

the properties listed in Table 2, it is found that the order of magnitude of

the terms in equations (93), (94) and (95) are

term (_ : 1.9 x I0-4

(_) : 1.9 x I0-4

(_) : .0125 MEo

® : 6 x IO-4_

® : .4 x I0-4"_

® : .14 x lO-6 M_o

(_) : 6 x 10-4

® : .4 x 10-4 w

(_) : .14 x 10-6 M_o
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All of the coupling terms, except possibly those involving H¢o' are small

compared to the terms in the uncoupled equatlons, and they may safely be

neglected. They are, in fact, much smaller than the corresponding terms for a

conventional helicopter blade. Terms C) and C_) are potentially significant

terms when B and _ have larger values as will be shown later In connection with

an experimental blade that was tested in a spin chamber.

As has been mentioned, a major source for M_o is unavoidable chordwise

curvature built into the blade during manufacture. Thus, assuming that the

blade is straightened by centrifugal force during deployment

El (97)
M¢o = _--

c

where R is the initial radius of curvature.
c

of equation (93) gives

Substitution into the third term

-- E R a8 + 0 -_-y] (98)

Statlc vertical deflection, as given by equation (96), therefore, produces a

moment load distribution

_: nO3 = - (I + y)2
(99)

Figure 12 sh_vs the pitch distribution that results from applicatlon of a

load,_ 0 = I/(l + y)2 Using Figure 12 and equation (99), the pitch angle at the

tlp due to a constant initial radius of curvature is

For the Sample Blade design

0 t = .225 80
(100)

0t = .225 x (500) x 6,26 x 10"41_---c_

= .07051_clradian.
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It should be possible, using only moderately careful calibration procedures,

to ensure that the initial radius of curvature is greater than 50,000 ft, a

value which Corresponds tO a tangent offset of about one inch in lO0 ft. Using

this value

#I0,000\

0 t = .0705 x_0_-_) = .O141 rad = .81 °

A static twist of this magnitude is probably insignificant. Initial Curvature

may be a problem for longer b]ades, particularly because the coning angle in-

creases with radius according to the formula

Pn R

80 = _ (lO1)

The corresponding pitch angle at the tip is

0 V% / (Io2)

Note that the pitch angle is directly proportional to the square of the radius

and inversely proportional to the thickness. Note also that it is inversely

proportional to the elastic energy density, Oo2/2E , so that materials with high

energy storage capacity are good candidates for Heliogyro blades.

Another potential source of steady chordwise bending moment is differential

thermal expansion. If a linear temperature gradient across the blade chord is

assumed, the steady chordwise moment is

M = EI _AT (103)
_o c

where _ is the coefficient of thermal expansion and AT is the difference in

temperature between the leading and trailing edges. The corresponding static

blade twist is

Ot= .225(2oE_o)('_I aAT8 o
(I04)
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For the Sample Blade, assuming c_ = 15 x IO-6/°F,

0 t = .225 x (500) x (lO00)×(I5 x ]O-6)x 6.26 x IO-4AT

= 1.058 x IO-3AT

The temperatures of the leading and trailing edges cannot be appreciably dif-

ferent if the chordwise camber is small. This subject will be discussed later.

Another effect of chordwise camber is to produce a chordwise shift in the

center of radiation pressure. The resulting pitching moment load is

= °°h_°CXp (105)
me = PnCXp R

where x is the distance from the center of pressure to the midchord. In
P

dimensionless form

p_21 =

Let It be assumed that the center of pressure is located at the same percent

chord from root to tip. The blade pitch deflection for a unit dimensionless

moment is plotted in Figure 12. Using Figure 12 and equation (IO6), the twist

angle at the tip Is

(io7)

For the Sample Blade design

0 t = 3.93 x IOO0 x 6.26 x lO-41_P- 1

<÷)= 2.46 radian.

The center of pressure shift should, therefore, be restricted to a few

percent of chord in order to limit blade twist to an acceptable va]ue. As in

the case of initial chordwisecUrvature, the problem becomes more severe for

longer blades. Substituting for 8° from equation (lOl) gives



£t = 3.93 \ch/\c /

It is seen that the effect is reduced by using higher strength materials.

Equations (102) and (108) provide practical limits to the blade radius,

which can be surpassed only by providing the blade with additional torsional

stiffness. Although it is not particularly difficult to develop concepts for

torsional reinforcement that can be stowed in a rol]ed up configuration, the

resulting increases in weight and complexity are not attractive. The analysis

that has been presented shows that such measures are probably unnecessary for

blades in the size range of the Sample Blade.

A large offset in the center of pressure can also produce significant

dynamic coupling. From the expression for the vertical component of radiation

pressure given by case 4 in Table 6, the pitching moment load is

me = PoCXp[(8 sin 4 - 6 cos 4) sin 2y + cos2T]
(109)

or, In dimensionless form,

We = 6 6o[(e sin 4 - 6 cos 4) sin 2y + cos2y] (110)

For the Sample Blade

X

_8 = 3.76 c-P- [(e sin 4 - 6 cos 4/ sin 2¥ + cos2y] (111)

For-( = 45 °, 4 = 90°, and 6 = O, the destabilizing moment load due to 0 is

- (g?me = 3.76 e (ll2)

The effect is significant, when compared with the other terms in the equation

of motion for pitch, only when the center of pressure offset is of the order of

several percent. Similar effects can be expected from a shift in the location

of the center of gravity. The magnitude of the center of gravity offset can,

however, be limited to a very small value by proper balance procedures during

manufacture.
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The main conclusions that have been reached regarding mechanical coupling

effects are that Initial blade chordwise curvature and blade center of pressure

shifts must be controlled. The required tolerances appear to be quite easy to

achieve for the Sample Blade design but they become increasingly difficult for

longer blades.

i
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CHORDWISE CURL

The significance of a chordwise shift of the center of pressure relative

to the midchord was examined in the preceding section where it was shown that

the shift should be limited to a few percent of blade chord (for the Sample

Blade design). An important cause of center of pressure shift is chordwise

camber, or curl, as illustrated in the following diagram.

f
z

fx,1_-----j

zI \

The blade chord is assumed to form a circular arc of radius R . The angle
c

of the illumination with respect to a normal to the blade at its midspan is Y.

Since the radiation pressure is normal to the local blade surface, the resultant

of the radiation pressure passes through the center of curvature and the moment

about the blade midspan axis per unit span is

m0 = Rc fx (113)

where f
x

is the horizontal component of the resultant.

: R sin c_ do_
fx c

-%/2

From the diagram

(I 14)
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and, from equation (1), assuming complete reflection,

P = Po c°s2 (Y - _) (ll5)

=

z

Solution of the above three equations gives

where c is the blade chord.

for small So,

m o = _ PoRc sin 2_. (ll6)

The vertical component of force is approximately,

fz = Po c c°s2Y (I17)

Hence, the per unit forward shift in the center of pressure is

x m0
_p_ = c tan h" (ll8)
c cT = 6R

z c

The maximum pitching moment occurs when y = 45 ° . For this condition x /c = c/6R .
p c

A reasonable design criterion for the Sample Blade design is that x /c < 0.01.
P

The corresponding requirement on blade chordwise curvature is that R /c > 16.67.
c

Chordwise curvature is the result of differential chordwise strain through

the thickness of the blade, which can be produced by manufacturing procedures

or by environmental effects. The latter, which are probably the more important,

include thermal expansion and changes in the crystal structure of the metallic

coating due to prolonged exposure to solar radiation. For example, solar protons

will gradually erode a surface that is exposed to sunlight thereby producing a

dissymmetry that will produce unsymmetrical thermal expansion, even if the

temperature is uniform throughout the cross-section. At the present tlme we do

not know the limits of the differential strain that can be produced by prolonged

exposure in the space environment. We can, however, determine an effective upper

limit to the moment that can be produced, as established by the yield strength

of the material. Structural reinforcement can then be designed that will

exhibit less than the permitted chordwise curvature while carrying the limit

moment.
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As an example, consider the Sample Blade design which has a Mylar core with

two external layers of pure aluminum as shown below.

hf m

hf
Jm

h

Let it be assumed that the top layer is stressed in tension to the yield

stress and that the bottom layer is stressed in compression to the yield stress.

The central core is assumed to be unstressed. The chordwise moment per unit

span is

mc = h hf Oy (llg)

where Oy is the yield stress.

The moment produced by differential expansion of the surface layers is

resisted by the bending stiffness of the core material and by the chordwise

component of centrifugal force which produces a chordwise tension stress (Ref. 9),

Ox = 2- p_2 - x (120)

where x is measured from the mid-chord. It is easily shown that neither effect.

is sufficient to reduce the chordwise curvature to an acceptable level and that

reinforcing members are required.

Figure 13 shows a design concept for a chordwise reinforcing member, or

batten, that was developed at Astro Research Corporation as part of the effort

described in this report. Each batten consists of a thin film of Kapton on

one side of which a carbon coating has been deposited. Chemical interaction

between the Kapton and the carbon produces a large prestress which, upon release

of one _ge of a strip of the coated film causes it to roll into a tight scroll

46



|

L

|

i

i
|

of approximately I/8 inch diameter. A volatile material which diffuses rapidly

in vacuum provides a temporary bond on one edge of the strip so that it may

conveniently be rolled in a flattened condition into the stowage roll.

Structural test of a sample scroll showed that it had a bending stiffness

(El) b equal to 6.39 Ib-in 2 and that its maximum bending moment capacity, as

limited by local crippling, was 0.265 Ib-in. The mass per unit length of the

scroll was 1.46 x I0-4 Ib/in.

It is important to attach the batten to the blade in such a way as to per-

mit differential expansion in the chordwise direction between the blade and the

batten. This can be done by slotting the batten scroll near the edge that is

attached to the blade. If the scroll is slotted, the total bending stiffness

is the sum of the stiffnesses of the blade and of the batten. Since the latter

is much larger than the former, the chordwise bending moment developed per unit

span is

(EI) b
m = (]21)

c Rc£ b

where £b ls the distance between battens. Thus, from equations (119) and (121)

(EI)b
(122)

£b = Rch hf Oy

For the Sample Blade, using the batten design concept that has been described

and the design criteria that have been suggested, the parameters in equation (122)

are

(EZ)b = 6.39 lb-in 2

R = 16.67 c = 2000 in
c

-4
h = 2.5 x lO in

h = .15 x lO-4 cm = .0591 x 10-4

Oy 5000 psi (pure aluminum)

in



The required batten spacing is

gb =
6.39

-4 -4
2000 x 2.5 x lO x .0591 x lO x 5000

= 432 in = 36.0 ft.

= (EI)b/R c = .0032 in-lb,The bending moment carried by each batten is Mc -4
which is well below its capacity. The weight of each batten is 120 x 1.46 x lO

.0]753 lb. The required number of battens is I0,000/36 = 278. The total weight

of all battens is .O1753 x 278 = 4.88 Ib, which is 2.5% of the blade weight.

Since the batten spacing is large compared to the chord, the manner in

which blade deformations are restrained by the battens should be investigated.

This may be done by examining the following differential equation which governs

the deflection of the blade normal to its surface.

® ® ® ® @

D_WL_--_ + 2 _x2_r2_+_w "_J_4_l-_r h _r) - _'_ (axh _--_)= Pn (123)

where
h/2

I dz (124)
Ez2

D = i__2

-h/2

is the bending stiffness. Since the curvature in the spanwise direction is

small, terms C_) and C_) may be neglected. Term C_) is very small, because o
X

Is very small (see equation (120) and may be neglected.

The boundary conditions are that the vertical displacement is restrained

by battens at r = rI and at r = rI + gb and that the leading and trailing edges are

free. The normal pressure, Pn' is very small, but differential expansion of the

blade produces an initial curvature whose effect may be represented by placing

bending loads equal to m on the leading and trailing edges. For simplicity,
c

it will be assumed that the battens are undeflected and that the deflection of

the blade varies sinusoidally in the spanwise direction. Thus

n/_Ar_
w = wm(x) s i k gb)

(125)
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where Ar = r - rI. With this assumption, and omitting the terms that have been

declared negligible, the differential equation is

_4W 'IT 2

m (^ _ h w = 0 (126)

D _--_-'_'+ \_b) Or m

+2
At the leading and trai]ing edges, x = -2' the boundary conditions are

a2w m mc 13wm

TX--_-= o

(127)

where, again, curvature in the spanwise direction has been neglected. Equations

(126) and (127) constitute a two-point boundary vaiue problem that is analogous

to the problem of a uniform beam with end moments on an elastic foundation. The

solution to the problem is

OS C_X nh'_'c cosh c_
-m c si., _-

w_- L-  nhf]m _ cos + sin _-- c

(128)

whe re

LTr2O'rh_l/4

_c
For Heliogyro blades, _-- is a large number which results in simplification.

the Sample Blade

D = 2.75 x I0-6 lb-in

o = 750 psi (at midspan)
r

h = 2.5 x lO -4 in

_b = 432 in

c : 120 in

(129)

For
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so that

= 1.38 in "I

and

c,___c= 82 9
2

Thus, in equation (t28) ctnh _c ac_-- = 1.O and cosh _x/sinh _ << 1 except very

near the edges. The resulting simplified expression for the deflectlon is

-m

C cos _x (130)
_c _C

Wm _'2 cos _---+ sin T-

which shows that the chordwise deflectlon shape is a wave. The chordw|se wave-

length _ = 2_/_ is equal to 4.56 Inches for the Sample Blade. The wave height

ls

m
c 1

w h = _ (131)_c _c

cos _-+ sin _--

_c

Since _ is a large number, the wave height can change a large amount for a

small change in _. The maximum value is

m
c

Whm = D--_ (132)

, = h hf Oy 7.39 x 10-6 in-lb/in, andFor the Sample Blade mc =

7.39 x 10-6
= = 1.41 in.

Whm 2.75 x 10-6 x (1.38) 2

It remalns to examine whether a wave of this height produces a significant shift

In the center of pressure. It may be noted in this connection, that the wave

height is directly proportional to batten spacing, as may be seen from equations

(129) and i132). Thus the wave he|ght can be reduced by reducing the batten

spacing.
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An analysis of the radiation pressure acting on a wavy surface whose

deflection is

I 2sin c_--S-c

w : w_ os _x COSh (z
n

sinh _

(133)

_w

produces, under the assumption that _-_<< l, the result that the pitching moment

per unit span about the mid chord is

me CPoWh sin 2_f cos 7- sin (134)

Note that the magnitude of the moment fluctuates between ±CPoW h sin 2¥ for small

variations in the physical parameters because _c/2 is a large number. This

characteristic may, in itself, be relied upon to produce an average pitching

moment load over a relatively long blade span that is much smaller than its

maximum value. The maximum value of me is

me = y/'2_CPoWhsin 2y (135)

The per unit shift in the center of pressure is, from equations (ll7) and (135)

x me wh
"-P-: _ = 2Vt_-- tan y (136)
c cf c

z

Thus, for the Sample Blade and the condition of maximum moment (y : 45°),

x l 41
-P-= 2V_x " = 0333
c 120 "

!
_i

!

_=

Considering that a very severe differential strain condition (yield stress on

top and bottom surfaces) has been assumed and that the effects of the variations

in physical parameters have been ignored, this result shows that the center of

pressure shift under practical conditions is probably negligible. A more im-

portant concern may be the presence of deep spanwise ridges in the blade which

will produce chordwise shrinkage and which will tend to invalidate the assumption

of specular reflection which is made in performance calculations. A shorter

distance between battens will tend to alleviate the problem, but a better solu-

tion is to establish a less conservative estimate of differential expansion by

further research.
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DYNAMIC RESPONSE DURING MANEUVERS

A major concern in the design of a flexible vehicle is the extent to which

structural flexibility will interfere with the response of the vehicle to

maneuver commands. This is particularly true of the Heliogyro because of the

extreme flexibility of its blades. Accordingly, it was deemed important to

perform an analysis of the dynamic response during maneuvers under the present

study.

The primary means for exerting forces on the vehicle in the plane of rota-

tion is cyclic blade pitch, as shown in Figure 14a. A simple application is

shown in Figure 14b, where cyclic pitch is used to Change the orbital altitude

of a vehicle in a polar orbit. Note that the frequency of the cyclic pitch input

should be equal to _ - 4, where _ is the orbital frequency, in order to align

the resultant control force with the orbital velocity at all times.

The theory for calculating the longitudinal and lateral forces due to cyclic

pitch is relatively simple if it is assumed that the blade is rigid. Consider,

for example, the case of axial illumination and small pitch angle. Then, the

total force on the blade in the chordwise direction is, from Table 6, case 4,

Fx = PoRCO (137)

w

The force components in the longitudinal and lateral directions (_ and y

in Figure If) are

Flong Fx sin _t

F = -F cos _t
lat x

(138)

Let the blade pitch be cyclicly excited at frequency _ + _o' such that

O = Oc sin (_+ _o)t (139)
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Then, combining the above equations and resolving the products of trigonometric

functions into sum and difference terms,

1 PoRC@c[COS COot - cos (2_ + OOo)t]Flong =

] PoRCec[Sin _ot + sin (2_2 + (_o)t]Fla t = -_

(140)

The high frequency terms have little significance and they will, in any

event, be cancelled out when the effects of three or more blades are added. The

low frequency terms are the desired control forces.

The elastic response to the sudden application of cyclic pitch was analyzed

during the present study by means of a digital computer simulation. The pitch

input was assumed to be a sine wave which is modulated by an envelope function

that rises to its full amplitude in one-half revolution, see Figure 15a. Three

different cases were analyzed corresponding to different values of the frequency

of the sine wave. Blade pitch was assumed to produce a component of force in

the inplane direction according to equation (137), which is the appropriate

expression for the case of axial illumination and small pitch motions.

The simulation included a single blade, with properties identical to those

of Sample Blade design. The center body was assumed to be massive compared to

the blades so that the translational motions at the blade root could be rigidly

restrained in the simulation, It is evident from the symmetry of the applied

load, see Figure 14a, that the inplane bending slope, _, should also be rigidly

restrained at the blade root.

Mechanical coupling between blade motions was ignored in view of the demon-

stration (see section on MECHANICAL COUPLING DUE TO BLADE DEFLECTIONS) that these

effects can be made negligible for the Sample Blade by careful construction. As

a result vertical deflectlons could be ignored entirely since they were not

coupled, either directly or indirectly, to the source of dynamic excitation.

Dampers were included at the blade root for torsional and inplane bending

motions. The properties of the dampers that were used and the damping that

they provided for the lowest four modes of each type are given in Tables 4 and 5-
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The analytical model included ten blade stations located at the following

spanwise positions;

STA 1 2 3 4 5 6 7 8 9 10

y = r/R .005 .010 .020 .040 .080 .150 .30 .50 .70 .90

Note the concentration of stations near the blade root in order to provide

adequate simulation for the rapid decay of chordwise bending moment.

The results of the analysis are presented in Figures 15a thru 15£ for the

case in which the frequency of the cyclic pitch excitation is equal to the

rotational speed. The response of various quantitites are plotted for the first

twenty revolutions following the initiation of the maneuver. The plots were

produced by a computer, which accounts for the somewhat unconventional scaling

practices that are evident.

The blade pitch response is shown in Figures 15b, c and d, where it is seen

that the pitch motion achieves its steady state value (within ±I0%) in about five

revolutions.

The inplane blade deflections at 50% and 90% span are shown in Figures 15e

and 15f. The presence and the decay of the low frequency (.105/rev) inplane mode

are evident in these plots. Note also that the amplitude of motion at the tip is

comparable in magnitude to the static vertical tip displacement (.694 R_ ) when
o

the magnitude of the pitch input is one radian. This is the order of magnitude

of dynamic chordwise motion that was assumed earlier in estimating mechanical

coupling effects.

The inplane and axial components of force that exist at the blade root are

shown in Figures 15g and 15h. The axial component was obtained by summing the

axial component of Coriolis force, f in equation (89), along the blade span.
Y

The |np]ane component is the sum of the inplane bending shear and the inplane

component of centrifugal force at the blade root. It is seen that the axial

component is, surprisinglyp about twice as large as the inplane component.

The forces at the blade root are resolved into components parallel to non-

rotating axes in Figures 15i and 15j. Note the presence of the steady component

of longitudinal force and the existence of the 2/rev oscillations as predicted
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by rigid blade theory. It is seen that the low frequencycomponentof the
longitudinal forcesettles down to the neighborhood of its final value within

about five revolutions. The gradual decay of the high frequency transients can

also be detected.

The lnplane bending moment near the blade root is plotted in Figures 15k and

15_, where it is seen that the bending moment decays to I0% of its value at the

root in only 2% of the span. The peak magnitude of the inplane moment at the

root is

M _ .006 PoR2C 0c

= 13.5 0 in-lb
c

!:

The corresponding displacement of the tension axis, as a fraction of blade chord,

is

x t M 13.5 ec
.... • 00375 e

: : :: : c Tc 30 x 120 c

Thus, even a one radian pitch amplitude produces a shift in the tension axis

that is negligibly small.

: The longitudinal and lateral force resultants produced by the simulation

study are compared with the results of rigid blade theory in Figure 16 for three

values of the cyclic pitch frequency, _. The 2/rev components of force were

filtered from the results of the simulator study. It is seen that, in all cases,

control is established within approximately one revolution and that the steady

state is achieved (within ±10%) in about five revolutions. It will be noted

that the steady state forces for the flexible blade exceed those for the rigid

blade when the pitch frequency is greater than one/rev, and are less than those

for the rigid blade when the pitch frequency is less than one/rev. This result

is explained by Figure 5.

=

_=
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EXPERIMENTAL PROGRAM

An experimental program, which was designed to demonstrate the deployment

concept and the control of blade pitch, was conducted at Astro Research Corpor-

ation as part of the present study. It was realized in advance that it would

be impossible to simulate the proper values of the critical dynamic parameters

(K, Bo) in an Earth environment. At the same time it was hoped that the exper-

iment might provide a verTfication of the theory of dynamic response. As

matters turned out the experiment was, in fact, a critical test of the theory

for dynamic coupling effects due to blade deflections.

The experimental apparatus consisted of an 18 Ft. diameter spin chamber in

which a model of the Heliogyro blade was deployed from a spool. The spin chamber

was not evacuated, but since it was enclosed and rotated at the same velocity

as the experimental model, the velocity of the enclosed air relative to the

blade was substantially zero and the aerodynamic effects (virtual mass and damp-

ing) could be neglected.

A diagram of the test set up and the parameters that define the experiment

are shown in Figure 17. It will be noted that the deployment spool is offset a

considerable distance from the axis of rotation. Note also that the pitch axis

of the blade is tangent to the surface of the spool and that it is inclined

downward at an angle that is somewhat less than the root coning angle of the

fully deployed blade. A number of experiments were conducted including unwind-

ing and rewinding the blade, steady cyclic pitch oscillations, and abrupt

changes in collective pitch. A motion picture was produced that demonstrates

successful accomplishment of these maneuvers.

The experimental blade consisted of a .001 inch thick strip of Kapton about

2 inches wide and 77 inches long. Photographs of the deployed blade made from

motion picture frames at two different pitch angles are shown in Figure 18. The

inplane deformation of the blade is clearly visible in the lower photograph.

The blade was painted in order to enhance its visibility and to provide lateral

markings for the observation of pitching motions. The paint, which was applied

to one side only, also produced chordwise camber.

56



The framesof a motion picture showingthe responseof the blade to an
abrupt changein collective pitch from zero degrees to twenty'flve degreeswere
analyzed to produce a time history of the pitching motion at the 50% span and

at the blade tip. The results of a digital computer simulation are compared

with the experimental measurements in Figure 19. The agreement between analysis

and experiment is seen to be only fair. It will be shown that the most likely

reasons for the observed discrepancles are nonlinear effects, not accounted for

in the analysis, and the extreme sensitivity of the response to the angle of

depression of the pitch axis.

The most important dimensionless modeling parameters for comparing the

dynamic response of different blades are the inplane bending stiffness parameter,

K, and the steady coning angle at the blade root, _o' The values of these para-

meters for the Sample Blade and the experimental blade are compared below.

F
I
I

!

K

I_o

Sample Experimental Experimental Blade

Blade Blade Sample Blade

•833 x 10 -4 .454

6.26 x lO -4 .1967

5440

314

The conclusion stated earlier, that dynamic coupling due to blade deflec-

tions is unimportant for the Heliogyro, obviously does not apply to the experi-

mental blade. The coupling terms in question are written in dimensionless

form in equations (93), (94) and (95). If small dynamic motions are assumed,

the important terms are those that contain the static coning angle Bs = _s/ay.

They are

!

E(_s) 2 E_s,
mO = - 2o O + 2"-O'--ay

O O

(141)

(142)

aBs a2_s
where Bs' =--_.=-_- .

_ 1 a2

?x " - _s _+ g a-_" (K_s'O) (143)

.57
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The analysis was performed including the above terms. The boundary condi-

tion at the blade root accounted for the angle between the blade twist axis and

the applied pitch axis. Thus the inplane blade slope at the root is

_o = a.__=By _0 c sin (_o - Bp) (144)

The sensitivity of the analysis to the inclination of the pitch axis, Bp,

is indicated in Figure 20 where it is seen that a change in _p of one degree

produces a 20 degree change in the peak pitch angle at the tip.

Since the peak transient pitch angle at the tip is actually rather large

(72 °) the error produced by the small angle assumption in the analysis cannot be

neglected. Furthermore, the peak magnitude of the inplane bending moment at

the blade root is large enough to produce buckling at the edges of the blade,

thereby altering the inplane bending stiffness of the experimental model signi-

ficantly.

The effects of finite elastic torsional stiffness and of the added mass

due to the air were investigated and were found to be unimportant. The most

probable reasons for the differences between the analytical and experimental

results are the effects of large dynamic motions, the effects of large initial

deflections, and the sensitivity of the respQnse to the inclination of the

pitch axis.
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.............. CONCLUSIONS

A number of fundamenta] topics concerning the structural dynamics of the

Heliogyro have been examined. These topics include

_Uncoupled vibration modes

--Means for providing damping

--Coupling between the blade motions

m Transient response to maneuver commands.

On the basis of the results of the study it may be concluded that:

F
iI__

i
i

i
=

I. Resonances between the harmonics of rotor speed and the blade vibration

modes are easily avoided.

2. Damping can be provided for all degrees of freedom. The damping in

pitch is sufficient to produce convergence to within I0% of steady

state In about five revolutions. The damping that can be provided

(with very little added weight) for inplane and vertical vibrations is

about an order of magnitude smaller but it is probably adequate. Damp-

ing for the rigid body nutation mode requires active control feedback

or an auxilliary passive damping device connected to the center body.

3. The major source of coupling between the blade motions is solar radia-

tion pressure which produces inplane and vertical forces due to pitch-

ing motion. This source is utilized in orientation and control of the

vehicle.

4. Pitching moments due to vertical and inplane blade deflections can be

held to an unimportant level for blades that are the size of the Sample

Blade (10,000 ft radius) by careful design and manufacture. The major

sources of unwanted pitching moments are a chordwise shift in the loca-

tion of the center of pressure due to chordwlse camber, and an initial

chordwise radius of curvature in the as-manufactured blade. Suppression

of chordwise camber requires chordwlse bending members (battens) at

frequent intervals. The design of a satisfactory batten which increases
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the weight of the Sample Blade by 2.5% has been demonstrated. The

control of initia] chordwise curvature to the level required by the

Sample Blade does not appear to be difficult.

Undesirable dynamic coupling effects (pitching moments) increase in

severity with increases in blade radius. For example, the steady

pitch angle at the blade tip due to center of pressure shift, Xp,

is, from equation (]08),

Pn R 2 Xp,

and the steady pitch angle at the tip due to initial chordwise radius

of curvature, Rc, is, from equation (I02),

8 t = .225 \2002]

It is seen that in both cases the pitch angle increases in proportion

to the square of the span, R, and inversely as the thickness, h. The

remedies, in addition to suppressing the primary sources, x and
P

I/Rc, are to increase the blade chord, c, and, more importantly, to

increase the blade centrifugal stress, o • Thus, the development of
o

higher strength materials will enhance the feasibility of designing

longer blades. Another remedy, which has the undesirable effects of

increasing the weight and complexity of the blade, is to provide

torsional stiffness by means of structural reinforcement.

6. The effect of blade flexibility on the ability to provide lateral

control forces by means of cyclic pitch is slight. Effective response

to an abrupt command is achieved (within ±I0%) in about five revolu-

tions. The effect of rotor size on control effectiveness is small.

In summary, it is concluded that no structural dynamic reasons to doubt

the feasibility of the Heliogyro in sizes up to lO,O00 ft radius have been dis-

covered. On the other hand, the development of very much larger sizes will

depend, In part, on the ability to minimize undesirable dynamic effects.
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APPENDIX

THE TWISTING MOMENT IN A SLIGHTLY CURVED BEAM

Consider a beam whose axis is slightly deflected from the r-axis, as shown

in the following sketch.

f
z

The angles Bo and _o' which define the orientation of the pitch axis at the root

end, are small. Thus, to first order in the angles, the moment about the pitch

axis is

+ {oMx + BoM (A-l)Ma = Mr z

The moments about the x, r and z axes due to running loads applied to the

centroidal axis of the beam are, from elementary mechanics,
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R

- _j" (-fr z + f r)drMx z

R

Mr _ f (fx z - fzx)dr

o

O

Upon substitution into equation (A-I):

R

= _r [fx z _M a f x +z o

(A-2)

(A-3)

(A-4)

(-fr z + fz r) + 13° (-fx r + frx)]dr (A-5)

_t:

E
F

Assuming that x, z, fx' fz' and _o and B ° are of first order and that fr and r

are of zero order, it is seen that all of the terms in equation (A-5) are of

second order. Equation (A-5) is inconvenient for use in an analysis where the

other effects are expressed by partial differential equations because of the

presence of B ° and t o, It can, however, be converted into a more amenable form

by applying the rules for integration by parts. First, however, it is convenient

to rewrite equation (A-5) in terms of the offset distances

f

z=z -13 r
o

X= X- r_ r
o

(A-6)

from a line tangent to the pitch axis at the root. Thus,

R

Ma =" f [f_- fz _+ fr (X13o - Z_o)]dr (A-7)
o

The formula for integration by parts is

[u vuvll (A-8)

The formula will be applied in the following manner to the terms in equation (A-7):

i

I
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Te rm

fz
X

fx
Z

fr(X6o - Z_o)

m

Z

x

xB° - z_°

dv

f dr
X

f dr
Z

f dr
r

du

03 - 13o) dr

(/_- _o)dr

(_o - _o )dr

rRfxdr = -Fx

._rR dr -- -F
- fz z

dr = -T- fr

r

The quantities Fx, Fz and T that appear above are respectively the total inplane

force, the total vertical force, and the total axial tension at a distance r

along the blade. The result of the integration by parts is

Ma = - Z--Fx + x'-Fz - T(x6°-z_°) o + [Fx(B-_°) - Fz(_-_°) + T(_B°-B_°)]dr (A-9)

The boundary terms vanish because z, x, x, and z are zero at r = Q and Fx, Fz and

T are zero at r = R. The inplane force, Fx, and the vertical force Fz, are partly

carried by centrifugal tension and partly carried by beam shear. Thus,

and

Fx T_ _ (A-10): - _r

aMB
F = T_ - _ (A-ll)
z Dr

where M and MB are respectively the inplane and vertical bending moments. Upon

substitution of equations (A-lO) and (A-ll) into equation (A-9), it is seen that

all of the terms proportional to T cancel each other so that

LRMa = [- _Mr-_ (13 - 13o) + _r (¢ - _o)]dr (A-12)

Integration of this equation by parts produces the result

R
(A- 13)
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Since the origin can be shifted without changing the form of the result, it is

seen that the running pitching moment load is

_13 _ (A- 14)
me = M_ _ - ME

The term indicated in equation (A-14) can be added directly to the dif-

ferential equation for pitch.

!
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TABLE 1

SOLAR SAIL DESIGN MORPHOLOGY

SHAPE MEANS OF RIGIDIZING MEANS OF ORIENTING

CIRCULAR

RECTANGULAR

VERY SLENDER

ELASTICITY

ELECTROSTATIC FORCE

MAGNETIC FORCE

CENTRIFUGAL FORCE

AREA SHADING

CENTER OF GRAVITY MOVEMENT

REFLECTING SURFACE ROTATION
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TABLE 2

PROPERTIES OF SAMPLE BLADE DESIGN

Blade Chord (uniform)

Blade Radius

Blade Material

Chordwise Bending Moment of Inertia

Surface Density

Modulus of Elasticity (Composite)

Rotational Speed,

Rotational Period

Blade Root Stress*

Blade Root Tension

Blade Weight

Total Thrust for Normal Solar Illumination

Sail Lightness Number, X
s

Blade Root Coning Angle

lO ft.

lO,O00 ft.

I/4 mil Mylar with

15OO A ° aluminum

coating each side.

36 in 4

1.34 x IO -5 psi

l.O x IO s psi

.O316 rad/sec

3.31 minutes

IOO0 psi

30 Ibs.

194 Ibs.

.O188 lb.

O.16

6.26 x lO -4 rad.

* Based on I/4 mil thickness.

I
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TABLE 3

UNCOUPLED BLADE FREQUENCIES

= _I_

n TWI ST VERTI CAL INPLANE

"_ = 1.414

: 2.646

= 4.000

= 5.385

l.O

-_ : 2.449

l_ = 3.873

: 5.291

0

"_ = 2.236

"I_ = 3.742

"V_ : 5.099
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TABLE 4

FREQUENCIES AND DAMPING FOR BLADE

PITCH MODES WITH A CONTROL DAMPER,

Kd Bd 2_

= 2.0; Kd

Mode Frequency Damping Revolutions to

Number Cycles/Rev. g I/2 Amplitude

I 1.368 .0845 1.91

2 2.618 .I024 .825

3 4.022 .0863 .636

4 5.455 .0680 .596

TABLE 5

FREQUENCIES AND DAMPING FOR INPLANE

MOTIONS OF THE SAMPLE BLADE WITH A DAMPER

WHOSE PROPERTIES ARE GIVEN IN EQUATION 65.

Mode Frequency Damping Revolutions to

Number Cycles/Rev. g I/2 Amplitude

l .I053 .I167 18.0

2 2.276 .00236 4|.0

3 3.834 .00196 29.5

4 5.342 .00159 26.1
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Figure 4. Rotor Blade Coordinate Notation
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Figure 5. Blade Tip Pitch Response due to

Sinusoidal Excitation at the Blade Root
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[a) Lateral Force Produced by Cyclic Pitch
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Figure 14. Lateral Vehicle Control

8_



(XtO-t) (a) Cyclic Pitch Input
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Figure 16. Force Resultants for Cyclic Pitch Input
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Bo__ p = 3.2 °

BP 8° _ _ - Pitch Axis
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Blade Properties

Thickness: .001" (Kapton)

Chord, C = I°938"

Weight/unit area = 1.08 x lO-4 Ib/in 2 (Kapton plus paint)

Modulus of elasticity, E = 500,000 psi

Operating Parameters

Spin rate, _ = 2_ rad/sec

Stress at Centerline, o = 43.6 psi
O

Coning angle at tip, Bt = 6.33 °

Inplane Stiffness Parameter, K = _ 7 _ _ .454
O

Figure 17. Heliogyro Blade Experiment
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Figure 18. Photographs of Rotating Blade in Test Chamber
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